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Comment on Noise and Bifurcations 

H. Calisto, 1 E. Cerda, 2 and E. Tirapegui 2 

Received May 4, 1992 

We calculate in exact form the first correction in a parameter measuring the 
strength of the noise to the effective potential for one-variable diffusion 
processes. The use of this potential to study transitions is discussed. 

KEY W O R D S :  Bifurcations; effective potential; functional integration; noise; 
transitions. 

In ref. 1 the effective potential was used to discuss transitions in a noisy 
dynamical system. In that interesting paper a critical analysis was done of 
the notion of a bifurcation point in a dynamical system in the presence of 
white noise. The conclusion was that the bifurcation point should be 
replaced more properly by a bifurcation region. One of the tools of the 
analysis was the effective potential and the arguments were illustrated with 
the normal form of the pitchfork bifurcation with additive white noise. The 
use of the effective potential for these problems, together with a stochastic 
interpretation of this function, was proposed by Graham (2~ some time ago 
and applied to the B6nard problem. We shall calculate here exactly the 
first-order correction (in the intensity of the noise) to the effective potential 
for an arbitrary stochastic differential equation 0 = A(q)+ xfn ~(t), where 
~(t) is the noise. Then we specialize to the pitchfork case A ( q ) = p q - q  3 
which was treated in ref. 1. We find no indication for the appearance of the 
bifurcation when # < 0 ,  while for p > 0  one has two minima for 
,///~2 < 16/69. 

We consider the stochastic differential equation 

= A(q) + ~/n ~(t) (1) 
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with ~(t) a Gaussian white noise with ( { ( t ) ) = 0  and ( { ( t ) { ( t ' ) ) =  
cS(t- t'). The generating functional of correlation functions for the Markov 
process defined by (1) with deterministic initial condition q(to)= ~0 is(3) 

x 6(q(to) - ~) (2) 

and one has (Vie [to, T])  

J=0 
f i  t t ~ Z [ J ]  =(q(z~)...q(~,~)) (3) 
i=1 

where 7(0) stands for prepoint discretization and defines (2) as the limit 
when N + oe of the multiple integral IN, 

N+I NI~I [u: f H dqi dej 
i=~ j=~ 2~rl 

where 

Aqj=-qs-qj_l, q0= c%, tj=to+je, tx+l= T 

T -  t o 

N + I  

We remark that in ref. 2 the Jacobian which appears in the derivation of 
this equation is absent, due to the prepoint discretization 7(0) which we are 
using. In general the Jacobian term is (4) 

(the prime stands from now on for derivative) in the 7(s) discretization 
which discretizes the q dependence in ref. 2 as q( t )~  qj_ 1+ s Aqs and for 
s = 0 it is just one. For  additive noise all discretizations 7(s) are equivalent 
and there is no reason for the choice s = 1/2 used in refs. 5 and 6 apart from 
the fact that integration by parts can be done with the usual formula in this 
case. (3'7) One can check in perturbation theory that the dependence in s 
disappears by cancellation at each order (8) (see also ref. 3). Putting 
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one defines F[q] as the Legendre transform of W[J] by (see, for example, 
ref. 9, Chapter V) 

f ~W 
r[q3  + w I - J ]  = dt J(t) q(O, 6J(t) = q(t) (5) 

From (3) one obtains 

~ w  = ( q ( 0 )  

(~J(t) J=o 

It is simple to show from (2) that W[JJ = W~ + t lml[J]  + O(q2) ,  and 
using this, one can obtain from (5) that F[q] = F ~  + t/FX[q] + O(~/2). 
The stationary solution of (1) is obtained from (2) taking the limit 
to ~ - o o  (since Tis  arbitrary, we take also T ~  or); in this case one shows 
that F[q] has the form 

f 
oO 

f/St[q] = dt [ V(q(t)) + (TBl(q(t)) + 02Bz(q(t)) 
- - o o  

+ ~83(q(0)  + -. .J (6) 

where V(q) is the effective potential. This function can be evaluated from 
(6) if we put q(t)= ~; then 

f 
T 

~ s t [ - ~ ]  = dt V(.)  = vV(e), 
to 

T -  t o=_ r --, ov 

T so that if we can factorize in FSt[q(.)=c~],  the integral S,odt=r 
unambiguously, we can calculate the function V(e). 

In order to calculate W~ and WI[J]  we proceed in the usual 
way. (9) 

The integrand in (2) can be written as (Pq -HS(P ,  q)) with 

H J = pA(q) -- ~ p2 + iJq 

Let (q = uJ(t), p = vJ(t)) be solutions of the Hamilton equations for H J, 
which are 

O H  J O H  J 
(1 = ~p = A(q) - ip, b = ~q pA'(q) - iJ (7) 

We choose uJ(t)=u(I)+O(J), vJ(T)=O(J), i.e., for J = 0  one has 
v J - ~  u~=~ with u(t) the solution of the deterministic 
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equation ~i = A(u(t)) with initial condition U(to)= ~o. We make now in (2) 
the change of variables 

q(t) = uS(t) + ,,/-d Q(t), p(t) = vS(t) + ~ P(t) (8) 

which gives {after replacing v J-- i[itS-A(uS)] from (7)} 

1 T  A(UJ)]2juJ}) Z [ J ] = e x p ( - - ~ o d t { ~ [ f i s -  

x a[uS][1 + O(q)] (9) 

+5 

where the discretized version of DQ DP is 

N + I  N + I  

~ dQ, I-I dP: 
i=~ :=1 2re 

thus showing that G[U J] does not depend on t/. Notice that the linear 
terms in (Q, P) vanish since (u:, v:) are solutions of the Hamilton 
equations for H s. 

From these formulas we obtain 

with 

W ~  = -~[u : ]  +f  dtJu J, 

~r = I  dtL(q, q), 

W~[J]=lnG[u J] (11) 

1[. L = g  q -A(q ) ]  2 

One has (~W~ and then we see from (5) that at lowest 
order q(t)=-uS(t). The functional F[q] up to first order in t/ can be 
calculated from (5) as 

F [ q ]  = - W ~  - t /W' [ J ]  + f dt J(t) q(t) + O(q 2) (12) 

where J must be replaced as a functional of q which is obtained by 
inversion of 

3 - - ( W ~  + rIW1)=q(t) 
3J(t) 
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But in fact one can easily see that in (12) one can still use the lowest-order 
result q(t)=uJ(t). Then, using (11), we have 

r[q] = d[q] - q In G[q] + O0/2) (12) 

where the functional G[q] is given by (10). 
Since we are finally interested in V(q) appearing in / -S t [q]  [see (6)], 

we put in (10) UJ(t)= q = const and it must be understood that in order to 
compare with (6) one must take the limit to ~ -o o ,  T--+ oo. After doing 
the Gaussian integration DP in (10) we obtain (q is a constant now) 

G~t[q] = 
(0) i=1 N~ 7~ 

• 6(Q(to)) (13) 

where 6(Q(to)) just means that in the prepoint discretized version of (13) 
which we are using one must put Qo = 0. 

We can write GSt[q] =~ dQ P(Q, T] 0, to) with 

l f ~I dQ* P(Q'TlO't~ e (0) i= 1%~ Tgg 

• e x p { - ~ , ~ d t [ ( Q - A ' Q ) 2 + A A " Q 2 ] }  

• a(Q(to)) 6(Q(T) - Q) (14) 

where the a-functions mean that Qo=0 ,  Qjv+~=Q in the discretized 
version. In the argument of the exponential we have the term ~dt QQ 
discretized in the prepoint, but o n e  h a s  (3"7) 

s dtQO=fy(1/2)dtQO-l(T-to)=lCO2-(T-to) ~ (15) 

since we can integrate by parts in the midpoint 7(1/2) discretization. Then 

P=exp IA?q--~) (O2--'c)l . K(O, T, O, to) 

with 

l~O~+*=Oi~ I,=, x/2~dQ~ ~_ II,~dt(Q2+22Q2) ] - 7 - - -  exp L 
(16) 
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where we have omitted ~(0), since now one can discretize Q(t) in an 
arbitrary way and 2 2 = A'(q) 2 + A(q) A"(q). Putting L(Q, Q) = 
2t~ ~ ~ i, we assume now that )~(q)2 > 0 (the values of q for which this 
is not valid do not allow us to factorize S 2 d t = r  at the end of the 
calculation) and we make in (16) the displacement Q(t)~( t )+Q(t )  
with e(t) the solution of the Euler-Lagrange equations for /~ with 
boundary conditions ~(t0) = 0, c~(T) = Q. Then 

K((~, TI 0, t0)= exp [ - � 89  r l  0, to) (17) 

since ~dts a)=�89 On the other hand (ref. 3, Chapter IX), 
K(0, T I 0, to)= [2nD(to)] -m, where D(t) satisfies the same equation as 
e(t) but with boundary conditions D(t)= O, D(T)= -1. 

Putting all this together and doing the Gaussian integral over Q, one 
finally obtains 

GS t i q l = e x p (  A'(q)2 c) 

( 22 )1/2 

X (2 -- A') exp(2z) + (,~ + A') e x p ( - ) ~ )  (18) 

In the limit ~ = T -  t o ~ oe one has 
T 

In GSt[q] = - - ~  [A'(q) + )~(q)] 

and consequently the effective potential obtained from (12) has the value 

1 
V(q)=~A(q)Z+2A'(q)+ [A'(q)2+A(q)A"(q)] 1/2 (19) 

From (5) one has 6F/6q(t)= J(t) and since 

we have 

O W  J = O  6J(t) = (q(t)) 

(~I"  q(t) = ~-  0 6q(t) <q~,~> 

and also F[q(t)= <q( t ) ) ]  =0.  In the stationary case <q(t))st=v =cons t  
and from (6) we Obtain V'(q = v) = 0 and V(q = v) = 0. Moreover, one must 
also have ~2) V"(q = v) > 0 since 

(~ 2 F s t  q = v 

(Sq(t) aq(t') 
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is just the inverse of the stationary correlation function. One should remark 
that if one has more than one locally stable equilibrium point for c) = A(q), 
i.e., A(q)= 0 has for example, two solutions c]1 and c~ 2 such that A(c]z)= 0, 
A'(c]~) <0 ,  l =  1, 2, then one can construct, at least as perturbation series 
in powers of ~/, two systems of stationary correlation functions 
(q(~t) �9 "" q(~,~))(l~ and this from two generating functionals Z~" [J ] .  From 
this we expect that V(q), which is the same function in both cases, should 
have two local minima at q = vz, v~= c]z+ O(tl) , l =  1, 2. This does not mean 
that ( q ( t ) ) ,  st equals one of these values, but rather that the system goes to 
one of these states and has an exponentially vanishing probability when 

~ 0 of the form exp( -a / r / )  of going out to the other state. 
Let us specialize now to A(q)= #q--q3, which is the normal form of 

the pitchfork bifurcation. From (19) we have 

~ ~ { ~ -  3q ~ + [ f (q l3  

f(q) = / ~ 2  _ 12#q2 + 15q4 
(20) 

We shall distinguish two cases: (a)/~ < 0 and (b)/~ > 0. 
In case (a), f(q)> 0 always and (20) defines a function Vl(q) for all 

q. This function has only one minimum at q = 0  and there VI(0)= 
V~(0) = 0, V~'(0)= #2/2 + 3r/> 0. This last number can be checked by the 
usual perturbation theory around q = 0 (it is enough to calculate the first 
correction to the correlation function). For  # = 0 the potential reduces to 
V(q)=�89 P'(0)= V ' (0 )=0 ,  V " ( 0 ) = q ( x / - ~ - 3 ) > 0 .  

In case (b), f(q)> 0 only for q2 outside an interval [a i ,  bl] ,  al ~-0.1#, 
b~-~0.7p, and (20) defines the potential only outside this interval. For 
/~ > 0 one has bistabilit~_ since the deterministic problem has two locally 
stable states ql,2 = -+x/P for which A(c]/)=0 and A'(~t)<0,  and at the 
same time the state q = 0 becomes unstable since A ' (0 )=  # > 0. One can 
also show that the mean values in the stationary states are now (q(t)) = 
v12 = _+v, v =,,/-~ ( 1 -  ~?/p2). From (20) we obtain now a function Vz(q) 
which has three local minima at q = 0 and q = v/, l = 1, 2, and 

v2(~,) = v;(~,) = 0, V;'(v/) = 4/~ 2 (1 - i - 6  ~ ] 6 9  t / )  

Again this value can be checked by perturbation theory around q =  v~ 
now. However, one has now that V2(0 )=q/~ >0 ,  V;(0) =0,  V; '(0)= 
p2(1 -9rl/l~2), i.e., V2(q) has its absolute minimum at q = _+v since V2(0 ) = 
r//~ > I/2( + v) = 0. We remark that V~'(v~) becomes negative at a = t///~ 2 > 
a~ = 16/69, where cr is the effective expansion parameter in this model, since 

822/69/5-6-14 
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an appropriate scaling puts the initial equation in the form 0-~ q - q 3 +  
~(t). But at a = ac we enter the critical region (1~ where the two systems 

of stationary correlation functions ( q ( r l ) - . .  q(rm))(t) with (q(r))(t)  = vt 
lose their meaning, since the time scale determined by the Arrhenius- 
Boltzmann factor is of order one, i.e., the escape time from vz is of order 
one. We can then say that the effective potential up to first order in a gives 
information about the critical bifurcation region. 

In summary, the potential V(q) calculated up to O(a) has for # < 0 
only one minimum and for g > 0 two minima for a < cr c. 
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